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Abstract. Frequency tables are a common way for national statistics
institutes to publish information. One of the most common methods em-
ployed to protect against unwanted disclosure is cell suppression, where
sensitive cell values are not published. A common heuristic used is the
small count heuristic, where counts beneath a given threshold are con-
sidered sensitive. It is well-discussed in the community that this heuristic
does not always protect tables well. In this work, we describe recent work
done on defining a disclosure-focused approach to cell suppression.
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1 Introduction

Small count suppression is one of the predominant heuristics used when employ-
ing cell suppression for protecting frequency tables against disclosure. However,
though it can be sufficient protection, this is not always the case. Indeed, cell
suppression methods focus on protecting against disclosure of cell values. For
magnitude tables, where the value or a unit’s contribution to the value needs to
be protected, this makes perfect sense. In frequency tables, however, an attacker
is seldom interested in discovering a unit’s contribution (as this is usually 1).
The type of disclosure one usually tries to protect against in frequency tables
is categorical attribute disclosure, which occurs when a unit’s membership in
certain cells can be deduced [1]. For this type of disclosure, simply suppressing
small counts is insufficient. Consider the following rows of a table containing
traffic-related accidents in Norwegian cities:

Uninjured Light Serious Total
Oslo 0 0 30 30
Bergen 0 0 2 2

Though each row has vastly different values, both are equally disclosive in the
above sense: an attacker can deduce, without further knowledge about contribut-
ing units, that all units in Oslo (resp. Bergen) were seriously injured. Applying
the small count suppression heuristic (without suppression of zeros) results in
the following table:
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Uninjured Light Serious Total
Oslo 0 0 30 30
Bergen 0 0 × ×

Here, no suppressed cell value can be recalculated (indeed, the estimate interval
is infinite), yet the suppression can hardly be labeled a success: The table is as
disclosive as it was pre-suppression. Assuming one knows of a unit in Bergen
(resp. Oslo), then it must have been seriously injured. Indeed, the disclosure
occurs independently of single table cells’ value, as witnessed in the example table
above. For this reason, some publishing institutions have adopted the practice
of suppressing all zeros as well. In [3], the authors argue this can, depending on
the table, lead to over or under-protection (in other words, still does not address
the disclosure), and propose a new heuristic aimed at targeting such disclosure
directly. In this work, we give a brief description of that method and describe
some of its weaknesses in Section 2. In Section 3, we provide an overview of recent
advances and a more general methodology. An article containing a complete
description of the new method, including details related to implementation, is in
preparation for submission to a journal. A draft version of this paper is available
on the arXiv [4].

2 Direct Disclosure

This section discusses the method described in [3]. The paper proposes a formal-
ization of an attacker’s knowledge, thus defining when disclosure happens, as well
as propose a new scheme for cell suppression. The work focuses on individual and
group attribute disclosure, in particular what is referred to as ”within-group dis-
closure” in [1, p. 187]: when a unit in a group can infer more information about
other units in the same group. For example, the first row in Table 1 (left) illus-
trates within-group disclosure, where the lightly injured unit can infer that all
other units in Oslo are seriously injured. [3] generalizes this notion by formal-
izing an attacker’s knowledge: an attacker A is a k-coalition, i.e., a group of k
units contributing to the table. Thus, an attacker can use its full knowledge of
k units to disclose information about other units. A cell c is then called directly
disclosive w.r.t. k if it contributes to a published marginal p, and the difference
freq(p)− freq(c) is less than or equal to k. In practice, the cell with the largest
contribution to the marginal will be directly disclosive. The authors make a fur-
ther distinction: not all cell membership disclosures represent an attacker gaining
knowledge. Indeed, unknown categories can play a specific role in protecting the
table, thus reducing the need for cell suppression.

Unknown categories [3] believe that not all such direct disclosures necessarily
need protection, and that this should be up to the publishing entity’s policies. In
particular, one can differentiate between different types of unknown categories:
disclosive and non-disclosive unknowns. These are related to the following ques-
tions [3]:
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Uninj. Light Serious Total

Oslo 0 1 5 6

Trondheim 4 1 3 8

Bergen 0 0 2 2

Stavanger 1 4 4 9

Uninj. Light Serious Total

Oslo 0 + × 6

Trondheim 4 1 3 8

Bergen 0 + × 2

Stavanger 1 4 4 9

Table 1. Example of a frequency table (left) summarizing levels of injury in traffic
accidents in Norwegian cities, with the direct-disclosure suppression for k = 1 on the
right. × and + represent primary and secondary suppressions respectively.

1. Does the disclosure of an unknown value lead to an attacker learning infor-
mation about a statistical unit?

2. Can an unknown value be used to identify oneself or others in the table?

For example, for a location variable Region, it is reasonable to assume that the
value “Unknown” would lead to the answer ”no” for both of the above ques-
tions. Therefore, disclosures of ”Unknown” and disclosures requiring an attacker
to know which units have ”Unknown” in the Region variable need no protection.
Not all unknown values, however, have this property. Consider ”Unknown dis-
ease” in a frequency table describing medical information. This can be used to
infer that a unit is sick, thus answering ”yes” to the first question. Furthermore,
depending on the specific situation, this value could be used to identify oneself
or others in a table: it can happen that someone knows they have an unknown
disease. For these types of unknowns, disclosures need to be protected.

Direct disclosure suppression In the paper [3], the authors suggest a new
heuristic for cell suppression in order to protect against direct disclosure. Here,
the directly-disclosive cells not protected by unknown categories are identified
and primary suppressed. Then, in order to ensure no direct disclosure in the fully
suppressed table, secondary suppressed cells must be chosen carefully, and zeros
must be permitted as candidates for suppression. An example of such suppression
can be seen in Table 1.

Example 1. Consider the first row in Table 1 (left). Here, a 1-coalition consisting
of the lightly injured unit in Oslo can disclose that all other units in Oslo are
seriously injured. Now consider the following alternative suppression patterns
which attempt to protect against this disclosure:

Uninj. Light Serious Total
Oslo1 0 1 × ×
Oslo2 × × 5 6
Oslo3 0 × × 6
Oslo4 × 1 × 6

In row Oslo1, the 1-coalition can see that all other units must be seriously
injured. Note that the attacker need not know the value of the (Oslo, Serious)
cell in order to make this disclosure. In row Oslo2, the 1-coalition comes to
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the same conclusion: it knows that all units contributing to suppressed cells are
members of the coalition (i.e., in (Oslo, Light)), and that therefore there are 1)
no uninjured units and 2) only one lightly injured unit. It is worth noting that
this suppression pattern (and thus this disclosure) would occur when applying
the standard of suppressing small counts and zeros.

In row Oslo3, the attacker cannot disclose the level of injury of the other
units, since it does not know how the suppressed 5 units are distributed between
Light and Serious. Similarly, in Oslo4 the 1-coalition can see that there are
no other lightly injured units, but cannot say how the remaining 5 units are
distributed between uninjured and seriously injured.

The suppression method in [3] shows promise for simple tables. However,
there are limitations. On the one hand, choosing the right secondary suppres-
sions to prevent disclosure is a complex task. Secondary cells must be chosen not
only to prevent recalculation of the sensitive cells, but additionally guarantee
that no direct disclosure occurs. Thus, the problem formulation is different than
the original cell suppression problem (CSP), and finding an optimal solution
would require at the very least considerable adjustment of existing solutions.
Furthermore, disclosure of combinations of cells not represented as published
marginals cannot be protected. Consider the righthand table in Table 1. In this
table, though no single unit can deduce cell membership of another unit (i.e.,
it is protected from direct disclosure), the table still contains a disclosure worth
protecting: in Stavanger, the uninjured unit can disclose that all other units are
injured, i.e., lightly or seriously injured. The premise that directly-disclosive cells
must be primary suppressed makes it hard to generalize the method to more com-
plex scenarios: if one wishes to protect against membership disclosure for such
groups of cells (e.g., Light and Serious as Injured), which of these cells should be
primary suppressed? In the next section, we describe a more general approach
to disclosure-driven suppression, called k-disclosure [4]. This method provides
a more robust handling of disclosure protection. In particular, the problem of
suppressing to protect against k-disclosure reduces to classical CSP, thus allow-
ing the use of existing solvers with some adjustments. Furthermore, it supports
protection of combinations of cells in a natural way.

3 k-Disclosure

This section describes a generalization of direct disclosure. A full description
of the method can be found in [4]. The premise remains the same as in direct
disclosure: we assume an attacker to have full knowledge of up to k units, i.e., an
attacker is a k-coalition. However, we wish to extend the protection to include
disclosure of groups of cells, called meaningful combinations. The method is
based on the following principle:

Principle 1 Let A be a collection of units contributing to a frequency table T .
Then A can disclose membership of a unit i in a group of cells C if and only if
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1. A knows that A and i both contribute to some sub-population P of units in
T ,

2. A can deduce that all units in P are in A or C.

As compared with direct disclosure, this is a generalization as it allows for groups
of cells C. Furthermore, since P is simply described as a ”sub-population”, it
need not refer to a published marginal. This allows for further flexibility, as
we discus in the following Section 3.1. Similarly to direct disclosure, these two
points are fulfilled if and only if the difference between P and C is less than
or equal to the size of A (k, if A is a k-coalition). The key insight of the new
method is the choice of primary cells: Since the differences are what lead to
disclosure, they must be considered sensitive. In the terms of cell suppression,
one wishes to prevent recalculation of these sensitive differences, i.e., they must
be primary suppressed. Then secondary cells must be chosen in such a manner
that the estimate interval of the differences includes numbers greater than k
(thus ensuring that Principle 1 does not hold). However, as such differences are
seldom represented as a cell to be published, this requires an adaptation to the
classical cell suppression problem.

A naive approach to supporting such functionality would be to include all
differences between marginals and their contributing cells in the table and pri-
mary suppressing those difference cells that lead to disclosure.1 This would result
in a considerable increase in table size, greatly increasing run time of the sup-
pression algorithm. Instead, we suggest pre-processing the table and adding only
those difference cells that lead to disclosure (and, for example, possibly taking
non-disclosive unknowns into consideration). Then the secondary suppression
algorithm may choose as candidates only the table cells meant to be published.

3.1 Meaningful Combinations

The k-disclosure method adds support for specifying groups of cells that need
protection, called meaningful combinations. This also provides functionality for
protecting against user-defined negative disclosure, where an attacker can deduce
that a unit is not in a certain group of cells. In this context, disclosure can
naturally be divided into two categories: disclosure of meaningful combinations,
and disclosure within meaningful combinations.

Disclosure of meaningful combinations This form of disclosure refers to
an attacker disclosing another units membership in a meaningful combinations.
Consider Table 2 (left): In the first row, an attacker without any knowledge about
statistical units (a 0-coalition) can deduce that all units in Oslo were injured.
Likewise, in the fourth row, an attacker with knowledge of the uninjured unit in
Stavanger (a 1-coalition) can disclose that all other units are injured. In order

1 Note that, when we refer to adding difference cells, we do not mean find the group of
cells that represent the difference. Rather, we mean create a new cell that describes
the structure represented by the difference.



6 D. P. Lupp, Ø. Langsrud

Uninj. Light Serious Total

Oslo 0 1 5 6

Trondheim 4 1 3 8

Bergen 0 0 2 2

Stavanger 1 4 4 9

Uninj. Light Serious Total

Oslo + 1 + 6

Trondheim 4 1 3 8

Bergen + 0 + 2

Stavanger + 4 + 9

Table 2. The same table as in Table 1 (left), a 1-disclosure suppression with meaningful
combination Injured = Serious + Light, without control of “disclosure within” (right).
Since the primary difference cells are hidden, all suppressed cells (+) are secondary
suppressions.

to protect against these disclosures, one can apply Principle 1: the attackers can
deduce that units are injured in Oslo (resp. Stavanger), because they see that the
difference between the common sub-population (in this case, the row totals) and
the units in the meaningful combination (the sum of Light and Serious) is less
than the coalition size. In order to protect against such disclosure, we can add
these difference cells to our cell suppression problem, primary suppress them,
and continue as described in the previous section. The result of this can be seen
in Table 2 (right).

Disclosure within meaningful combinations This form of disclosure hap-
pens when an attacker does not need a published marginal to represent the
common sub-population to disclose a unit’s attribute. Consider the second row
in Table 2 (left). Here, an attacker with knowledge of the lightly injured unit in
Trondheim (a 1-coalition) can deduce that all other injured units must be seri-
ously injured. The publishing entity must decide whether or not it is likely that
an attacker possesses such detailed information about other units. If they deem
it too high a risk, then we once again can apply Principle 1 and the subsequent
discussion. This time, however, the difference cell does not refer to the difference
between a marginal and a sum of cells. Rather, one must add a cell representing
((Trondheim,Light)+ (Trondheim, Serious))− (Trondheim,Light), and then
proceed with the cell suppression as described previously.

4 Implementation

Both methods, direct disclosure and k-disclosure suppression, have been im-
plemented in the GaussSuppression R-package [2]. In particular, the internal
structure used to describe suppression problems is well-suited for this approach.

The package uses a model matrix X to describe the relationship between the
input y and the output z, such that z = XT y, where y and z are vectors of
frequencies. Here, each row of X corresponds to one entry of the input data (ei-
ther an aggregated table or microdata), and each column represents a published
cell. Thus, an entry xij in X is equal to 1 iff row i in the input contributes to
published cell j. Then the secondary suppression algorithm uses Gaussian elim-
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ination on X to determine which columns of X can lead to recalculation of the
primary cells (also represented by columns in X).

Due to this structure, adding support for k-disclosure suppression was fairly
straightforward: rather than having primary cells correspond to columns in
X, one needed only extend the tool to allow for custom columns not con-
tained in X to be considered primary suppressed. In that manner, one can de-
fine the new columns representing the (not to be published) difference cells by
adding/subtracting the relevant columns of X and running the same algorithm.

A weakness of the Gaussian elimination method is the non-optimality with
regards to number of suppressed cells and no control over estimate intervals.
Protection against exact recalculation of suppressed frequencies is achieved, but
currently the method has no control over what intervals an attacker can estimate
for suppressed cells. As such, it is not guaranteed that the suppression will
protect against disclosure. If, for example, a table is suppressed in such a way that
a 3-coalition can estimate a difference to be in the interval [0, 2], the disclosure
can still occur according to Principle 1. Still, publishing entity’s must weigh
the risk with utility: the algorithm shows promising protection in practice, and
allows for comparably quick suppression of very large tables.

We believe adding k-disclosure functionality is a candidate for future develop-
ment in other popular tools, such as tauArgus [6] and sdcTable [5]. However, we
are unsure as to whether or not this will be straightforward to implement. Even
if the initial table can be defined by a single hierarchy-setup (tree-shaped), the
table including differences may need to be specified as multiple linked tables. It
is also advantageous to include only the differences that are primary suppressed
(others are hidden and are not needed). Furthermore, zeros must be able to be
secondary suppressed, though this problem might not prove difficult to solve for
these tools. The benefit of implementing this functionality in the aforementioned
tools would be to have access to more optimal secondary suppression algorithms,
where one in addition can have some control over the attacker’s intervals.
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